# AvgPool

AvgPool  // Average Pooling operation


## Description¶

Average pooling windows its input and produces an average for each window.

### Inputs¶

Name

Element Type

Shape

Notes

data

Any

$$(N,C,d_1,\ldots,d_n)$$

$$n>0, d_i>0$$

### Attributes¶

Name

Type

Notes

w

Shape[n]

Window shape. $$w_i\le d_i$$

s

Strides[n]

Window strides.

p

Shape[n]

q

Shape[n]

i

Boolean

### Outputs¶

Name

Element Type

Shape

output

Any

$$(N,C,d'_1,\ldots,d'_n)$$

Average pooling takes as its input, a batch tensor data of shape $$(N,C,d_1,\ldots,d_n)$$, where where $$N$$ is the batch size, and $$C > 0$$ is the number of channels (sometimes called features). The dimensions $$(d_1,\ldots,d_n)$$ correspond to the shape of an $$n$$-dimensional data item in a batch. For example, where $$n=2$$, the data may represent a two-dimensional image. It also takes four attributes:

1. window shape,

2. window movement strides, (optional)

The shape of output is $$(N,C,d'_1,\ldots,d'_n)$$, where $$d'_n = \lceil \frac{p_i + d_i + q_i - w_i + 1}{s_i} \rceil$$.

Informal definition: If $$\textit{i}$$ is $$\textit{true}$$, then averages are computed as though the padding region contained regular elements of value zero. If $$\textit{i}$$ is $$\textit{false}$$, then averages are computed using only the non-padding tensor elements that are present in each window.

Example: Consider two instances of this operator with the following attributes: $$\textit{w} = (2,2)$$, $$\textit{s} = (1,1)$$, $$\textit{p} = (1,1)$$, and (in one instance) $$\textit{i} = false$$ or (in the other instance) $$\textit{i} = true$$.

Consider how those two operator instances would handle this input tensor:

$\begin{split}T_\textit{in} = \begin{bmatrix} 1 & 3 & 5 & \ldots \\ 7 & 11 & 13 & \ldots \\ 17 & 19 & 23 & \ldots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}\end{split}$

Applying the padding indicated by the value of $$\textit{p}$$, we have the padded image of $$T_\textit{in}$$ as follows:

$\begin{split}T_\textit{in,padded} = \begin{bmatrix} (0) & (0) & (0) & (0) & \ldots \\ (0) & 1 & 3 & 5 & \ldots \\ (0) & 7 & 11 & 13 & \ldots \\ (0) & 17 & 19 & 23 & \ldots \\ (0) & \vdots & \vdots & \vdots & \ddots \end{bmatrix}\end{split}$

Now consider how the two variations of this example’s AvgPool operator will compute the “average” value of the top-left window, which contains exactly the elements:

$\begin{split}\begin{bmatrix} (0) & (0) \\ (0) & 1 \end{bmatrix}\end{split}$

If $$\textit{i} = false$$, then the operator simply ignores the padding elements. It therefore computes the average of the single-element set $$\{ 1 \}$$, yielding $$1.0$$.

If $$\textit{i} = true$$, then the operator computes the average of the set $$\{ 0, 0, 0, 1\}$$, yielding 0.25.

Note: This operator is ill-defined when both of the following conditions hold: (1) $$\textit{i} = false$$, and (2) the operator’s other attribute values indicate that at least one window will contain only padding elements.

Formal definition: In the absence of padding, given an input data batch tensor $$T_\textit{in}$$, the output tensor is defined by the equation

$T_\textit{out}[a,c,i_1,\ldots,i_n] = \frac{\sum_{j_1 = s_1 i_1, \ldots, j_n = s_n i_n}^{j_1 = s_1 i_1 + w_1 - 1, \ldots, j_n = s_n i_n + w_n - 1} T_\textit{in}[a,c,j_1,\ldots,j_n]}{\prod_{i=1}^n{w_n}}$

In the presence of padding, we do not always want to divide by a reciprocal equal to the number of elements in the window, since some of the output points are determined by a window that is partly hanging beyond the edge of the tensor. In this case we can define the output

In this case we can define the output via a few intermediate steps.

First define the sum tensor $$T_\textit{sum}$$, with shape $$(N,C,d'_1,\ldots,d'_n)$$, as follows.

$T_\textit{sum}[a,c,i_1,\ldots,i_n] = \frac{\sum_{j_1 = s_1 i_1, \ldots, j_n = s_n i_n}^{j_1 = s_1 i_1 + w_1 - 1, \ldots, j_n = s_n i_n + w_n - 1} \textit{val}[a,c,j_1,\ldots,j_n]}{\prod_{i=1}^n{w_n}}$

where

$\begin{split}\textit{val}[a,c,j_1,\ldots,j_n] = \begin{cases} T_\textit{in}[a,c,j_1,\ldots,j_n]&\text{if for all } k, p_k \le j_k < p_k + d_k\\ 0&\text{otherwise}. \end{cases}\end{split}$

Second, define the divisor tensor $$T_\textit{div}$$, with shape $$(N,C,d'_1,\ldots,d'_n)$$, as follows.

$T_\textit{div}[a,c,i_1,\ldots,i_n] = \frac{\sum_{j_1 = s_1 i_1, \ldots, j_n = s_n i_n}^{j_1 = s_1 i_1 + w_1 - 1, \ldots, j_n = s_n i_n + w_n - 1} \textit{val}[a,c,j_1,\ldots,j_n]}{\prod_{i=1}^n{w_n}}$

where

$\begin{split}\textit{val}[a,c,j_1,\ldots,j_n] = \begin{cases} 1&\text{if for all }k, p_k \le j_k < p_k + d_k\\ 0&\text{otherwise}. \end{cases}\end{split}$

Finally, define $$T_\textit{out}$$ as the result of elementwise dividing $$T_\textit{sum}$$ by $$T_\textit{div}$$. Note that at positions where $$T_\textit{div}$$ is zero, values may be infinity or nan. (This corresponds to a condition where the pooling window is completely out of bounds, encompassing no valid values.)

## C++ Interface¶

class AvgPool : public ngraph::op::Op

Batched average pooling operation, with optional padding and window stride.

Public Functions

const std::string &description() const

Get the string name for the type of the node, such as Add or Multiply. The class name, must not contain spaces as it is used for codegen.

Return

A const reference to the node’s type name

AvgPool()

Constructs a batched average pooling operation.

AvgPool(const Output<Node> &arg, const Shape &window_shape, const Strides &window_movement_strides, const Shape &padding_below, const Shape &padding_above, bool include_padding_in_avg_computation, const PadType &pad_type, bool ceil_mode)

Constructs a batched average pooling operation.

Parameters
• arg: The output producing the input data batch tensor.[d1, dn]

• window_shape: The window shape.[n]

• window_movement_strides: The window movement strides.[n]

• padding_below: The below-padding shape.[n]

• padding_above: The above-padding shape.[n]

• include_padding_in_avg_computation: If true then averages include padding elements, each treated as the number zero. If false, padding elements are entirely ignored when computing averages.

• pad_type: Padding type to use for additional padded dimensions

• ceil_mode: Whether to use ceiling while computing output shape.

AvgPool(const Output<Node> &arg, const Shape &window_shape, const Strides &window_movement_strides, const Shape &padding_below, const Shape &padding_above, bool include_padding_in_avg_computation, const PadType &pad_type)

Constructs a batched average pooling operation.

Parameters
• arg: The output producing the input data batch tensor.[d1, dn]

• window_shape: The window shape.[n]

• window_movement_strides: The window movement strides.[n]

• padding_below: The below-padding shape.[n]

• padding_above: The above-padding shape.[n]

• include_padding_in_avg_computation: If true then averages include padding elements, each treated as the number zero. If false, padding elements are entirely ignored when computing averages.

• pad_type: Padding type to use for additional padded dimensions

AvgPool(const Output<Node> &arg, const Shape &window_shape, const Strides &window_movement_strides, const Shape &padding_below, const Shape &padding_above, bool include_padding_in_avg_computation = false)

Constructs a batched average pooling operation.

Parameters
• arg: The output producing the input data batch tensor.[d1, dn]

• window_shape: The window shape.[n]

• window_movement_strides: The window movement strides.[n]

• padding_below: The below-padding shape.[n]

• padding_above: The above-padding shape.[n]

• include_padding_in_avg_computation: If true then averages include padding elements, each treated as the number zero. If false, padding elements are entirely ignored when computing averages.

AvgPool(const Output<Node> &arg, const Shape &window_shape, const Strides &window_movement_strides)

Constructs a batched, unpadded average pooling operation (i.e., all padding shapes are set to 0).

Parameters
• arg: The output producing the input data batch tensor.[d1, ..., dn]

• window_shape: The window shape.[n]

• window_movement_strides: The window movement strides.[n]

AvgPool(const Output<Node> &arg, const Shape &window_shape)

Constructs an unstrided batched convolution operation (i.e., all window movement strides are 1 and all padding shapes are set to 0).

Parameters
• arg: The output producing the input data batch tensor.[d1, ..., dn]

• window_shape: The window shape.[n]

void validate_and_infer_types()

Throws if the node is invalid.

const Shape &get_window_shape() const

Return

The window shape.

const Strides &get_window_movement_strides() const

Return

The window movement strides.

const Shape &get_padding_below() const

Return

const Shape &get_padding_above() const

Return

const op::PadType &get_pad_type() const
virtual std::shared_ptr<Node> get_default_value() const