List of passes

The kinds of compiler passes available can be broken down into different buckets:

Graph Optimization Passes

Graph Optimization Passes

More Detail

AlgebraicSimplification

Algebraic Simplification

CommonSubexpressionElimination

Common Subexpression Elimination

ConstantFolding

Constant Folding

CoreFusion

Core Fusion

ReshapeElimination

Reshape Elimination

ReshapeSinking

Reshape Sinking

Node Optimization Passes

Node Optimization Passes

More Detail

NopElimination

ZeroDimTensorElimination

Memory Assignment Passes

Memory Assignment Passes

More Detail

AssignLayout

Liveness

MemoryLayout

PropagateCacheability

Codegen Passes

Important

Codegen is currently experimental only.

Codegen Passes

More Detail

CommonFunctionCollection

Experimental Only

Debug Passes

Debug Passes

More Detail

DumpSorted

MemoryVisualize

Serialization

VisualizeTree

Maintenance Passes

Maintenance Passes

More Detail

GetOutputElementElimination

LikeReplacement

ValidateGraph

Important

All of the above passes are currently implementable; more detailed documentation for each pass may be a Work In Progress (WIP).

Algebraic Simplification

../../../_images/algebraic-simpl.png

Algebraic simplification

The Algebraic Simplification pass implements what amounts to a “grab bag” of algebraic simplification rules. It does some basic things like rewrite “zero times x” to simply “zero”, or “zero plus x” to plain “x”.

It can also do a number of tricks more specific to deep learning. For example, if we discover that a tensor is being sliced up by adjacent segments, only to have those slices concatenated back together again, we can skip the slicing and concatting altogether. Or, if a tensor is being padded, but the actual width of the padding is zero all around, we can skip the padding step entirely.

Several other transformations like this are implemented in the algebraic simplification pass. And while none of these transformations might seem particularly impressive on their own, when everything comes together the results of this pass often yield improvement even on the initial graph straight out of the bridge. This pass is also quite important as a “glue” pass that can be used to clean up and/or re-simplify after other passes have done their own tricks. See the example on Compiler passes for an example of how effective this can be.

Common Subexpression Elimination

Constant Folding

Core Fusion

Reshape Elimination

The pass also called Reshape/Transpose Elimination will find and optimize where we can “push” two Transpose ops through a matrix multiplication. For example, if you have two matrices (say, foo and bar), both of these matrices will be transposed (to produce foo.t and bar.t, respectively), after which foo.t and bar.t get multiplied together.

Often a more efficient way to implement this is to switch the order of the arguments foo and bar, multiply them together, and then transpose the output of the matmul. Effectively, this cuts two Transpose operations down to just one, where the Reshape/Transpose elimination will do that rewrite for you.

Another common pattern that can be optimized via nGraph is the case where two transpositions cancel each other out. One example of this is taking the “Transpose” of the transpose of a matrix, though actually a more common case is when the graph is translating among different batch formats. We can often move these operations around through a process called Reshape sinking/swimming, and in cases where two transposes wind up canceling each other out, we can cut them both out of the graph.

Reshape Sinking

Zero-Element Tensor Elimination